
Introduction

1 / 114

1. Introduction

2. Why Study Data Structures and Abstract Data Types?

3. Getting Started with Data

4. Review of Programming

5. Review of OOP

2 / 114

1.1~1.4 Introduction

3 / 114

Given a problem, a computer scientist’s goal is to develop an algorithm, a step-by-step
list of instructions for solving any instance of the problem that might arise.
Algorithms are finite processes that if followed will solve the problem.

4 / 114

Given a problem, a computer scientist’s goal is to develop an algorithm, a step-by-step
list of instructions for solving any instance of the problem that might arise.
Algorithms are finite processes that if followed will solve the problem.

source: https://www.owkin.com/a-z-of-ai-for-healthcare/algorithm

4 / 114

Given a problem, a computer scientist’s goal is to develop an algorithm, a step-by-step
list of instructions for solving any instance of the problem that might arise.
Algorithms are finite processes that if followed will solve the problem.

source: https://www.owkin.com/a-z-of-ai-for-healthcare/algorithm

It is very common to include the word computable when describing problems and
solutions. We say that a problem is computable if an algorithm exists for solving it. A
definition for computer science is to study the problems that are and that are not
computable!

4 / 114

Computer science is also the study of abstraction. Abstraction allows us to view the
problem and solution in such a way as to separate the so-called logical and physical
perspectives.

5 / 114

Computer science is also the study of abstraction. Abstraction allows us to view the
problem and solution in such a way as to separate the so-called logical and physical
perspectives.

For instance, you are using the functions provided by the vehicle designers for the
purpose of transporting you from one location to another. These functions are sometimes
also referred to as the interface.

5 / 114

As another example of abstraction, consider the Python math module. Once we import
the module, we can perform computations such as

6 / 114

As another example of abstraction, consider the Python math module. Once we import
the module, we can perform computations such as

In [1]: import math

math.sqrt(16)

Out[1]: 4.0

6 / 114

As another example of abstraction, consider the Python math module. Once we import
the module, we can perform computations such as

In [1]: import math

math.sqrt(16)

Out[1]: 4.0

This is an example of procedural abstraction.

6 / 114

Programming is the process of encoding an algorithm into a programming language, so
that it can be executed by a computer. Programming languages must provide ways to
represent both the process and the data which is known as control constructs and data
types.

7 / 114

Programming is the process of encoding an algorithm into a programming language, so
that it can be executed by a computer. Programming languages must provide ways to
represent both the process and the data which is known as control constructs and data
types.

Control constructs allow algorithmic steps to be represented in a convenient yet
unambiguous way.

7 / 114

Programming is the process of encoding an algorithm into a programming language, so
that it can be executed by a computer. Programming languages must provide ways to
represent both the process and the data which is known as control constructs and data
types.

Control constructs allow algorithmic steps to be represented in a convenient yet
unambiguous way.

7 / 114

We give the formal definition of algorithm here:

1. Well-Defined: An algorithm must be a well-defined, ordered set of instructions.

2. Unambiguous steps: If one step is to add two integers, we must define both
‘integers’ as well as the ‘add’ operation

8 / 114

We give the formal definition of algorithm here:

1. Well-Defined: An algorithm must be a well-defined, ordered set of instructions.

2. Unambiguous steps: If one step is to add two integers, we must define both
‘integers’ as well as the ‘add’ operation

3. Produce a result: An algorithm must produce a result. The result can be data
returned or some other effect (for example, printing).

4. Terminate in a finite time: An algorithm must terminate. If it does not, we have
not created an algorithm!

8 / 114

1.5 Why Study Data Structures and Abstract
Data Types?

9 / 114

The data abstraction share a similar idea with procedure abstraction. An abstract data
type, sometimes abbreviated ADT, is a logical description of how we view the data and the
operations that are allowed without regard to how they will be implemented.

10 / 114

The data abstraction share a similar idea with procedure abstraction. An abstract data
type, sometimes abbreviated ADT, is a logical description of how we view the data and the
operations that are allowed without regard to how they will be implemented.

By providing this level of abstraction, we are creating an encapsulation around the data.
The idea is that by encapsulating the details of the implementation, we are hiding them
from the user's view.

10 / 114

The data abstraction share a similar idea with procedure abstraction. An abstract data
type, sometimes abbreviated ADT, is a logical description of how we view the data and the
operations that are allowed without regard to how they will be implemented.

By providing this level of abstraction, we are creating an encapsulation around the data.
The idea is that by encapsulating the details of the implementation, we are hiding them
from the user's view.

10 / 114

The implementation of an abstract data type, often referred to as a data structure, will
require that we provide a physical view of the data using some collection of programming
constructs and primitive data types.

11 / 114

The implementation of an abstract data type, often referred to as a data structure, will
require that we provide a physical view of the data using some collection of programming
constructs and primitive data types.

The separation of these two perspectives will allow us to provide an implementation-
independent view of the data.

11 / 114

The implementation of an abstract data type, often referred to as a data structure, will
require that we provide a physical view of the data using some collection of programming
constructs and primitive data types.

The separation of these two perspectives will allow us to provide an implementation-
independent view of the data.

There will usually be many different ways to implement an abstract data type and the user
can remain focused on the problem-solving process.

11 / 114

1.6 Why Study Algorithms?

12 / 114

Being exposed to different problem-solving techniques and seeing how different
algorithms are designed to help us. We can then begin to develop pattern recognition so
that the next time a similar problem arises, we are better able to solve it!

13 / 114

Being exposed to different problem-solving techniques and seeing how different
algorithms are designed to help us. We can then begin to develop pattern recognition so
that the next time a similar problem arises, we are better able to solve it!

On the other hand, it is entirely possible that there are many different ways to implement
the details to algorithm. One algorithm may use many fewer resources than another. We
would like to have some way to compare these solutions. Even though they both work,
one is perhaps "better" than the other.

13 / 114

As we study algorithms, we can learn analysis techniques that allow us to compare and
contrast solutions based solely on their own characteristics, not the characteristics of the
program or computer used to implement them.

14 / 114

As we study algorithms, we can learn analysis techniques that allow us to compare and
contrast solutions based solely on their own characteristics, not the characteristics of the
program or computer used to implement them.

There will often be trade-offs that we will need to identify and decide upon. As computer
scientists, in addition to our ability to solve problems, we will also need to know and
understand solution evaluation techniques.

14 / 114

1.8 Getting Started with Data

15 / 114

In Python , as well as in any other object-oriented programming language, we define a
class to be a description of what the data look like (the state) and what the data can do
(the behavior).

16 / 114

In Python , as well as in any other object-oriented programming language, we define a
class to be a description of what the data look like (the state) and what the data can do
(the behavior).

Classes are analogous to abstract data types because a user of a class only sees the state
and behavior of an objects in the object-oriented paradigm. An object is an instance of a
class.

16 / 114

1.8.1 Built-in Atomic Data Types

17 / 114

Python has two main built-in numeric classes that implement the integer and floating-
point data types. These Python classes are called int and float . The standard
arithmetic operators, + , - , * , / , % (modulo), // (integer division) and **
(exponentiation), can be used:

18 / 114

Python has two main built-in numeric classes that implement the integer and floating-
point data types. These Python classes are called int and float . The standard
arithmetic operators, + , - , * , / , % (modulo), // (integer division) and **
(exponentiation), can be used:

In [2]: print(2 + 3 * 4)
print((2 + 3) * 4)
print(2 ** 10)
print(6 / 3)
print(7 / 3)
print(7 // 3)
print(7 % 3)
print(2 ** 100)

14
20
1024
2.0
2.3333333333333335
2
1
1267650600228229401496703205376

18 / 114

The Boolean data type, implemented as the Python bool class, will be quite useful for
representing truth values. The possible state values for a Boolean object are True and
False with the standard Boolean operators, and , or , and not .

19 / 114

The Boolean data type, implemented as the Python bool class, will be quite useful for
representing truth values. The possible state values for a Boolean object are True and
False with the standard Boolean operators, and , or , and not .

In [3]: print(False or True)
print(not (False or True))
print(True and True)

True
False
True

19 / 114

The Boolean data type, implemented as the Python bool class, will be quite useful for
representing truth values. The possible state values for a Boolean object are True and
False with the standard Boolean operators, and , or , and not .

In [3]: print(False or True)
print(not (False or True))
print(True and True)

True
False
True

Boolean data objects are also used as results for comparison operators such as equality
(==) and greater than (>). The table below shows the relational and logical operators.

19 / 114

Operation Name Operator Explanation

less than < Less than operator

greater than > Greater than operator

less than or equal <= Less than or equal to operator

greater than or
equal >= Greater than or equal to operator

equal == Equality operator

not equal != Not equal operator

logical and and Both operands True for result to be True

logical or or One or the other operand is True for the result to be
True

logical not not Negates the truth value, False becomes True, True
becomes False

20 / 114

In [4]: print(5 == 10)
print(10 > 5)
print((5 >= 1) and (5 <= 10))
print((1 < 5) or (10 < 1))
print(1 < 5 < 10)

False
True
True
True
True

21 / 114

Identifiers are used in programming languages as names. In Python , identifiers start with
a letter or an underscore (_), are case sensitive, and can be of any length.

22 / 114

Identifiers are used in programming languages as names. In Python , identifiers start with
a letter or an underscore (_), are case sensitive, and can be of any length.

A Python variable is created when a name is used for the first time on the left-hand side
of an assignment statement. Assignment statements provide a way to associate a name
with a value. The variable will hold a reference to a piece of data but not the data itself.

22 / 114

Identifiers are used in programming languages as names. In Python , identifiers start with
a letter or an underscore (_), are case sensitive, and can be of any length.

A Python variable is created when a name is used for the first time on the left-hand side
of an assignment statement. Assignment statements provide a way to associate a name
with a value. The variable will hold a reference to a piece of data but not the data itself.

In [5]: the_sum = 0
print(the_sum)

the_sum = the_sum + 1
print(the_sum)

the_sum = True
print(the_sum)

0
1
True

22 / 114

The assignment statement the_sum = 0 creates a variable and lets it hold the reference
to the data object 0.

23 / 114

The assignment statement the_sum = 0 creates a variable and lets it hold the reference
to the data object 0.

At this point in our example, the type of the variable is integer as that is the type of the
data currently being referred to by the_sum .

23 / 114

If the type of the data changes, as shown above with the Boolean value True , so does
the type of the variable (the_sum is now of the type Boolean).

24 / 114

If the type of the data changes, as shown above with the Boolean value True , so does
the type of the variable (the_sum is now of the type Boolean).

The assignment statement changes the reference being held by the variable. This is a
dynamic characteristic of Python . The same variable can refer to many different types of
data.

24 / 114

1.8.2. Built-in Collection Data Types

25 / 114

Python has a number of very powerful built-in collection classes. Lists , strings , and
tuples are ordered collections (sequence) that are very similar in general structure.
Sets and dictionaries are unordered collections.

26 / 114

Python has a number of very powerful built-in collection classes. Lists , strings , and
tuples are ordered collections (sequence) that are very similar in general structure.
Sets and dictionaries are unordered collections.

A list is an ordered collection of zero or more references to Python data objects. Lists
are heterogeneous, meaning that the data objects need not all be from the same class
and the collection can be assigned to a variable as below.

26 / 114

Python has a number of very powerful built-in collection classes. Lists , strings , and
tuples are ordered collections (sequence) that are very similar in general structure.
Sets and dictionaries are unordered collections.

A list is an ordered collection of zero or more references to Python data objects. Lists
are heterogeneous, meaning that the data objects need not all be from the same class
and the collection can be assigned to a variable as below.

In [6]: my_list = [1, 3, True, 6.5]
my_list

Out[6]: [1, 3, True, 6.5]

26 / 114

Since lists are considered to be sequentially ordered, they support a number of
operations that can be applied to any Python sequence.

27 / 114

Operation Name Operator Explanation

indexing [] Access an element of a sequence

concatenation + Combine sequences together

repetition * Concatenate a repeated number of times

membership in Ask whether an item is in a sequence

length len Ask the number of items in the sequence

slicing [:] Extract a part of a sequence

28 / 114

Operation Name Operator Explanation

indexing [] Access an element of a sequence

concatenation + Combine sequences together

repetition * Concatenate a repeated number of times

membership in Ask whether an item is in a sequence

length len Ask the number of items in the sequence

slicing [:] Extract a part of a sequence

Note that the indices for lists start counting with 0. The slice operation
my_list[1:3] returns a list of items starting with the item indexed by 1 up to—but not
including—the item indexed by 3.

28 / 114

Lists support a number of methods that will be used to build data structures.

29 / 114

Lists support a number of methods that will be used to build data structures.

Method
Name Use Explanation

append a_list.append(item) Adds a new item to the end of a list

insert a_list.insert(i,item) Inserts an item at the ith position in a list

pop a_list.pop() Removes and returns the last item in a list

pop a_list.pop(i) Removes and returns the ith item in a list

sort a_list.sort() Sorts a list in place

reverse a_list.reverse() Modifies a list to be in reverse order

del del a_list[i] Deletes the item in the ith position

index a_list.index(item)
Returns the index of the first occurrence
of item

count a_list.count(item)
Returns the number of occurrences of
item

remove a_list.remove(item) Removes the first occurrence of item

29 / 114

In [7]: my_list = [1024, 3, True, 6.5]
my_list.append(False)
print(my_list)
my_list.insert(2,4.5)
print(my_list)
print(my_list.pop())
print(my_list)
print(my_list.pop(1))
print(my_list)
my_list.pop(2)
print(my_list)

[1024, 3, True, 6.5, False]
[1024, 3, 4.5, True, 6.5, False]
False
[1024, 3, 4.5, True, 6.5]
3
[1024, 4.5, True, 6.5]
[1024, 4.5, 6.5]

30 / 114

In [8]: my_list.sort()
print(my_list)
my_list.reverse()
print(my_list)
print(my_list.count(6.5))
print(my_list.index(4.5))
my_list.remove(6.5)
print(my_list)
del my_list[0]
print(my_list)

[4.5, 6.5, 1024]
[1024, 6.5, 4.5]
1
2
[1024, 4.5]
[4.5]

31 / 114

You can see that some of the methods, such as pop() , return a value and also modify the
list . Others, such as reverse() , simply modify the list with no return value. You
should also notice the familiar "dot" notation for asking an object to invoke a method.

32 / 114

You can see that some of the methods, such as pop() , return a value and also modify the
list . Others, such as reverse() , simply modify the list with no return value. You
should also notice the familiar "dot" notation for asking an object to invoke a method.

In fact, even simple data objects such as integers can invoke methods in this way.

32 / 114

You can see that some of the methods, such as pop() , return a value and also modify the
list . Others, such as reverse() , simply modify the list with no return value. You
should also notice the familiar "dot" notation for asking an object to invoke a method.

In fact, even simple data objects such as integers can invoke methods in this way.

In [9]: (54).__add__(21) # Equal to 54+21

Out[9]: 75

32 / 114

One common Python function that is often discussed in conjunction with lists is the
range() function. range() produces a range object that represents a sequence of
values.

33 / 114

One common Python function that is often discussed in conjunction with lists is the
range() function. range() produces a range object that represents a sequence of
values.

In [10]: print(range(10))
print(list(range(10)))
print(range(5, 10))
print(list(range(5, 10)))
print(list(range(5, 10, 2)))
print(list(range(10, 1, -1)))

range(0, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(5, 10)
[5, 6, 7, 8, 9]
[5, 7, 9]
[10, 9, 8, 7, 6, 5, 4, 3, 2]

33 / 114

Strings are sequential collections of zero or more letters, numbers, and other symbols.
Literal string values are differentiated from identifiers by using quotation marks (either
single or double):

34 / 114

Strings are sequential collections of zero or more letters, numbers, and other symbols.
Literal string values are differentiated from identifiers by using quotation marks (either
single or double):

In [11]: print("David")
print('David')
my_name = "David"
print(my_name[3])
print(my_name * 2)
print(len(my_name))

David
David
i
DavidDavid
5

34 / 114

A major difference between lists and strings is that lists can be modified while
strings cannot. This is referred to as mutability. Lists are mutable; strings are
immutable.

35 / 114

A major difference between lists and strings is that lists can be modified while
strings cannot. This is referred to as mutability. Lists are mutable; strings are
immutable.

In [13]: print(my_list)
my_list[0] = 2 ** 10
print(my_list)

print(my_name)
my_name[0] = "X"

[4.5]
[1024]
David

--

TypeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\1799471016.py in <module>
 4
 5 print(my_name)
----> 6 my_name[0] = "X"

TypeError: 'str' object does not support item assignment

35 / 114

Tuples are very similar to lists in that they are heterogeneous sequences of data. The
difference is that a tuple is immutable, like a string . As sequences, they can use
operation described above:

36 / 114

Tuples are very similar to lists in that they are heterogeneous sequences of data. The
difference is that a tuple is immutable, like a string . As sequences, they can use
operation described above:

In [14]: my_tuple = (2, True, 4.96)
print(my_tuple)
print(len(my_tuple))
print(my_tuple[0])
print(my_tuple * 3)
print(my_tuple[0:2])

my_tuple[1] = False

(2, True, 4.96)
3
2
(2, True, 4.96, 2, True, 4.96, 2, True, 4.96)
(2, True)

--

TypeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\329028039.py in <module>
 6 print(my_tuple[0:2])
 7
----> 8 my_tuple[1] = False

TypeError: 'tuple' object does not support item assignment 36 / 114

A set is an unordered collection of zero or more immutable Python data objects.
Sets do not allow duplicates. The empty set is represented by set() :

37 / 114

A set is an unordered collection of zero or more immutable Python data objects.
Sets do not allow duplicates. The empty set is represented by set() :

In [15]: my_set = {3, 6, "cat", 4.5, False}
my_set

Out[15]: {3, 4.5, 6, False, 'cat'}

37 / 114

Even though sets are not considered to be sequential, they do support a few of the
familiar operations presented earlier.

38 / 114

Even though sets are not considered to be sequential, they do support a few of the
familiar operations presented earlier.

Operation
Name Operator Explanation

membership in Set membership

length len Returns the cardinality of the set

union
a_set \|
other_set

Returns a new set with all elements from both
sets

intersection
a_set &
other_set

Returns a new set with only those elements
common to both sets

difference
a_set -
other_set

Returns a new set with all items from the first
set not in the second

subset
a_set <=
other_set

Asks whether all elements of the first set are in
the second

38 / 114

In [16]: print(len(my_set))
print(False in my_set)
print("dog" in my_set)

5
True
False

39 / 114

Our final Python collection is an unordered structure called a dictionary .
Dictionaries are collections of associated pairs of items where each pair consists of a
key and a value. This key-value pair is typically written as key:value .

40 / 114

Our final Python collection is an unordered structure called a dictionary .
Dictionaries are collections of associated pairs of items where each pair consists of a
key and a value. This key-value pair is typically written as key:value .

In [19]: capitals = {"Iowa": "Des Moines", "Wisconsin": "Madison"}
capitals

Out[19]: {'Iowa': 'Des Moines', 'Wisconsin': 'Madison'}

40 / 114

We can manipulate a dictionary by accessing a value via its key or by adding another
key-value pair. The syntax for access looks much like a sequence access except that
instead of using the index of the item, we use the key value.

41 / 114

We can manipulate a dictionary by accessing a value via its key or by adding another
key-value pair. The syntax for access looks much like a sequence access except that
instead of using the index of the item, we use the key value.

In [20]: capitals = {"Iowa": "Des Moines", "Wisconsin": "Madison"}
print(capitals["Iowa"])
capitals["Utah"] = "Salt Lake City"
print(capitals)
capitals["California"] = "Sacramento"
print(len(capitals))
for k in capitals:
 print(capitals[k],"is the capital of", k)

Des Moines
{'Iowa': 'Des Moines', 'Wisconsin': 'Madison', 'Utah': 'Salt Lake Cit
y'}
4
Des Moines is the capital of Iowa
Madison is the capital of Wisconsin
Salt Lake City is the capital of Utah
Sacramento is the capital of California

41 / 114

Dictionaries have both methods and operators. The keys() , values() , and
items() methods all return objects that contain the values of interest.

42 / 114

Dictionaries have both methods and operators. The keys() , values() , and
items() methods all return objects that contain the values of interest.

Operator Use Explanation

[] a_dict[k]
Returns the value associated with k , otherwise its an
error

in key in a_dict
Returns True if key is in the dictionary, False
otherwise

del
del
a_dict[key]

Removes the entry from the dictionary

42 / 114

Method
Name Use Explanation

keys a_dict.keys() Returns the keys of the dictionary in a
dict_keys object

values a_dict.values() Returns the values of the dictionary in a
dict_values object

items a_dict.items() Returns the key-value pairs in a dict_items
object

get a_dict.get(k)
Returns the value associated with k , None
otherwise

get
a_dict.get(k,
alt)

Returns the value associated with k , alt
otherwise

43 / 114

In [21]: phone_ext={"david": 1410, "brad": 1137, "roman": 1171}
print(phone_ext)
print(phone_ext.keys())
print(list(phone_ext.keys()))
print(phone_ext.values())
print(list(phone_ext.values()))
print(phone_ext.items())
print(list(phone_ext.items()))
print(phone_ext.get("kent"))
print(phone_ext.get("kent", "NO ENTRY"))

{'david': 1410, 'brad': 1137, 'roman': 1171}
dict_keys(['david', 'brad', 'roman'])
['david', 'brad', 'roman']
dict_values([1410, 1137, 1171])
[1410, 1137, 1171]
dict_items([('david', 1410), ('brad', 1137), ('roman', 1171)])
[('david', 1410), ('brad', 1137), ('roman', 1171)]
None
NO ENTRY

44 / 114

1.9. Input and Output

45 / 114

Python provides us with a function that allows us to ask a user to enter some data and
returns a reference to the data in the form of a string . The function is called input .

46 / 114

Python provides us with a function that allows us to ask a user to enter some data and
returns a reference to the data in the form of a string . The function is called input .

Python ’s function input takes a single parameter that is a string . This string is often
called the prompt because it contains some helpful text prompting the user to enter
something

46 / 114

Python provides us with a function that allows us to ask a user to enter some data and
returns a reference to the data in the form of a string . The function is called input .

Python ’s function input takes a single parameter that is a string . This string is often
called the prompt because it contains some helpful text prompting the user to enter
something

In [22]: a_name = input("Please enter your name: ")
print("Your name in all capitals is", a_name.upper(),
 "and has length", len(a_name))

Please enter your name: phonchi
Your name in all capitals is PHONCHI and has length 7

46 / 114

It is important to note that the value returned from the input function will be a string
representing the exact characters that were entered after the prompt. If you want this
string interpreted as another type, you must provide the type conversion
explicitly.

47 / 114

It is important to note that the value returned from the input function will be a string
representing the exact characters that were entered after the prompt. If you want this
string interpreted as another type, you must provide the type conversion
explicitly.

In [24]: s_radius = input("Please enter the radius of the circle ")
print(s_radius)
radius = float(s_radius)
print(radius)
diameter = 2 * radius
print(diameter)

Please enter the radius of the circle 3
3
3.0
6.0

47 / 114

1.9.1. String Formatting

48 / 114

print() takes zero or more parameters and displays them using a single blank as the
default separator. It is possible to change the separator character by setting the sep
argument. In addition, each print ends with a newline character by default. This behavior
can be changed by setting the end argument.

49 / 114

print() takes zero or more parameters and displays them using a single blank as the
default separator. It is possible to change the separator character by setting the sep
argument. In addition, each print ends with a newline character by default. This behavior
can be changed by setting the end argument.

In [25]: print("Hello")
print("Hello", "World")
print("Hello", "World", sep="***")
print("Hello", "World", end="***")
print("Hello")

Hello
Hello World
Hello***World
Hello World***Hello

49 / 114

It is often useful to have more control over the look of your output. Fortunately, Python
provides us with an alternative called formatted strings. A formatted string is a template
in which words or spaces that will remain constant are combined with placeholders for
variables that will be inserted into the string.

50 / 114

It is often useful to have more control over the look of your output. Fortunately, Python
provides us with an alternative called formatted strings. A formatted string is a template
in which words or spaces that will remain constant are combined with placeholders for
variables that will be inserted into the string.

In [26]: age = 20
print(a_name, "is", age, "years old.")
print("%s is %d years old." % (a_name, age))

phonchi is 20 years old.
phonchi is 20 years old.

50 / 114

It is often useful to have more control over the look of your output. Fortunately, Python
provides us with an alternative called formatted strings. A formatted string is a template
in which words or spaces that will remain constant are combined with placeholders for
variables that will be inserted into the string.

In [26]: age = 20
print(a_name, "is", age, "years old.")
print("%s is %d years old." % (a_name, age))

phonchi is 20 years old.
phonchi is 20 years old.

The % operator is a string operator called the format operator. The left side of the
expression holds the template or format string, and the right side holds a collection of
values that will be substituted into the format string.

50 / 114

The format string may contain one or more conversion specifications. A conversion
character tells the format operator what type of value is going to be inserted into that
position in the string . In the example above, the %s specifies a string, while the %d
specifies an integer.

51 / 114

The format string may contain one or more conversion specifications. A conversion
character tells the format operator what type of value is going to be inserted into that
position in the string . In the example above, the %s specifies a string, while the %d
specifies an integer.

Character Output Format

d , i Integer

u Unsigned integer

f Floating point as m.ddddd

e Floating point as m.ddddde+/-xx

E Floating point as m.dddddE+/-xx

g Use %e for exponents less than -4 or greater than +5, otherwise use %f

c Single character

s
String, or any Python data object that can be converted to a string by using
the str function

% Insert a literal % character

51 / 114

Python 3.6 introduced f-strings, a way to use proper variable names instead of
placeholders. Formatting conversion symbols can still be used inside an f-string, but the
alignment symbols are different from those used with placeholders

52 / 114

Python 3.6 introduced f-strings, a way to use proper variable names instead of
placeholders. Formatting conversion symbols can still be used inside an f-string, but the
alignment symbols are different from those used with placeholders

Modifier Example Description

number :20d Put the value in a field width of 20

< :<20d Put the value in a field 20 characters wide, left-aligned

> :>20d Put the value in a field 20 characters wide, right-aligned

^ :^20d Put the value in a field 20 characters wide, center-aligned

0 :020d
Put the value in a field 20 characters wide, fill in with leading
zeros

. :20.2f
Put the value in a field 20 characters wide with 2 characters to
the right of the decimal point

52 / 114

In [29]: price = 24
item = "banana"
print(f"The {item:10} costs {price:10.2f} cents")
print(f"The {item:<10} costs {price:<10.2f} cents")
print(f"The {item:^10} costs {price:^10.2f} cents")
print(f"The {item:>10} costs {price:>10.2f} cents")
print(f"The {item:>10} costs {price:>010.2f} cents")
itemdict = {"item": "banana", "price": 24}
print(f"Item:{itemdict['item']:.>10}\n" +
 f"Price:{'$':.>4}{itemdict['price']:5.2f}")

The banana costs 24.00 cents
The banana costs 24.00 cents
The banana costs 24.00 cents
The banana costs 24.00 cents
The banana costs 0000024.00 cents
Item:....banana
Price:...$24.00

53 / 114

1.10. Control Structures

54 / 114

As we noted earlier, algorithms require two important control structures: iteration and
selection. Both of these are supported by Python in various forms. For iteration, Python
provides a standard while statement and a very powerful for statement. The while
statement repeats a body of code as long as a condition evaluates to True :

55 / 114

As we noted earlier, algorithms require two important control structures: iteration and
selection. Both of these are supported by Python in various forms. For iteration, Python
provides a standard while statement and a very powerful for statement. The while
statement repeats a body of code as long as a condition evaluates to True :

In [30]: counter = 1
while counter <= 5:
 print("Hello, world")
 counter = counter + 1

Hello, world
Hello, world
Hello, world
Hello, world
Hello, world

55 / 114

As we noted earlier, algorithms require two important control structures: iteration and
selection. Both of these are supported by Python in various forms. For iteration, Python
provides a standard while statement and a very powerful for statement. The while
statement repeats a body of code as long as a condition evaluates to True :

In [30]: counter = 1
while counter <= 5:
 print("Hello, world")
 counter = counter + 1

Hello, world
Hello, world
Hello, world
Hello, world
Hello, world

It is easy to see the structure of a Python while statement due to the mandatory
indentation pattern that the language enforces.

55 / 114

Even though this type of construct is very useful in a wide variety of situations, another
iterative structure, the for statement, can be used in conjunction with many of the
Python collections. The for statement can be used to iterate over the members of a
collection, so long as the collection is a sequence.

56 / 114

Even though this type of construct is very useful in a wide variety of situations, another
iterative structure, the for statement, can be used in conjunction with many of the
Python collections. The for statement can be used to iterate over the members of a
collection, so long as the collection is a sequence.

In [31]: for item in [1, 3, 6, 2, 5]:
 print(item)

1
3
6
2
5

56 / 114

A common use of the for statement is to implement definite iteration over a range of
values.

57 / 114

A common use of the for statement is to implement definite iteration over a range of
values.

In [32]: for item in range(5):
 print(item ** 2)

0
1
4
9
16

57 / 114

Selection statements allow programmers to ask questions and then, based on the result,
perform different actions. Most programming languages provide two versions of this
useful construct: the if...else and the if . A simple example of a binary selection
uses the if...else statement.

58 / 114

Selection statements allow programmers to ask questions and then, based on the result,
perform different actions. Most programming languages provide two versions of this
useful construct: the if...else and the if . A simple example of a binary selection
uses the if...else statement.

In [34]: import math
n = 16
if n < 0:
 print("Sorry, value is negative")
else:
 print(math.sqrt(n))

4.0

58 / 114

Selection constructs, as with any control construct, can be nested so that the result of one
question helps decide whether to ask the next. For example, assume that score is a
variable holding a reference to a score for a computer science test.

59 / 114

Selection constructs, as with any control construct, can be nested so that the result of one
question helps decide whether to ask the next. For example, assume that score is a
variable holding a reference to a score for a computer science test.

In [35]: score = 85
if score >= 90:
 print("A")
else:
 if score >= 80:
 print("B")
 else:
 if score >= 70:
 print("C")
 else:
 if score >= 60:
 print("D")
 else:
 print("F")

B

59 / 114

An alternative syntax for this type of nested selection uses the elif keyword. Note that
the final else is still necessary to provide the default case if all other conditions fail.

60 / 114

An alternative syntax for this type of nested selection uses the elif keyword. Note that
the final else is still necessary to provide the default case if all other conditions fail.

In [36]: if score >= 90:
 print("A")
elif score >= 80:
 print("B")
elif score >= 70:
 print("C")
elif score >= 60:
 print("D")
else:
 print("F")

B

60 / 114

Returning to lists , there is an alternative method for creating a list that uses
iteration and selection constructs known as a list comprehension. A list comprehension
allows you to easily create a list based on some processing or selection criteria.

61 / 114

Returning to lists , there is an alternative method for creating a list that uses
iteration and selection constructs known as a list comprehension. A list comprehension
allows you to easily create a list based on some processing or selection criteria.

In [38]: sq_list = []
for x in range(1, 11):
 sq_list.append(x * x)

print(sq_list)

sq_list=[x * x for x in range(1, 11)]
sq_list

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Out[38]: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

61 / 114

The general syntax for a list comprehension also allows a selection criteria to be added so
that only certain items get added.

62 / 114

The general syntax for a list comprehension also allows a selection criteria to be added so
that only certain items get added.

In [39]: sq_list=[x * x for x in range(1,11) if x % 2 != 0]
sq_list

Out[39]: [1, 9, 25, 49, 81]

62 / 114

Exercise: Develop a function average that takes a list of integers, aList , calculates their average, and
prints "pass" or "fail" based on the average being >=60 or not, respectively. Include the average score
rounded to one decimal place in the output.

63 / 114

Exercise: Develop a function average that takes a list of integers, aList , calculates their average, and
prints "pass" or "fail" based on the average being >=60 or not, respectively. Include the average score
rounded to one decimal place in the output.

In [40]: def average(aList):
 #Your code here

63 / 114

Exercise: Develop a function average that takes a list of integers, aList , calculates their average, and
prints "pass" or "fail" based on the average being >=60 or not, respectively. Include the average score
rounded to one decimal place in the output.

In [40]: def average(aList):
 #Your code here

In [41]: average([99, 100, 74, 63, 100, 100])
average([22, 19, 74, 63, 100, 44])

pass, the score is 89.3
fail, the score is 53.7

63 / 114

1.11. Exception Handling

64 / 114

There are two types of errors that typically occur when writing programs. The first, known
as a syntax error, simply means that the programmer has made a mistake in the structure
of a statement or expression.

65 / 114

There are two types of errors that typically occur when writing programs. The first, known
as a syntax error, simply means that the programmer has made a mistake in the structure
of a statement or expression.

In [42]: for i in range(10)

 File "C:\Users\adm\AppData\Local\Temp\ipykernel_19312\1522442676.p
y", line 1
 for i in range(10)
 ^
SyntaxError: invalid syntax

65 / 114

The other type of error, known as a logic error, denotes a situation where the program
executes but gives the wrong result. This can be due to an error in the underlying
algorithm or an error in your translation of that algorithm.

66 / 114

The other type of error, known as a logic error, denotes a situation where the program
executes but gives the wrong result. This can be due to an error in the underlying
algorithm or an error in your translation of that algorithm.

In some cases, logic errors lead to very bad situations such as trying to divide by zero or
trying to access an item in a list where the index of the item is outside the bounds of the
list. In this case, the logic error leads to a runtime error that causes the program to
terminate! These types of runtime errors are typically called exceptions.

66 / 114

Most programming languages provide a way to deal with these errors that will allow the
programmer to have some type of intervention if they so choose. In addition,
programmers can create their own exceptions if they detect a situation in the program
execution that warrants it.

67 / 114

Most programming languages provide a way to deal with these errors that will allow the
programmer to have some type of intervention if they so choose. In addition,
programmers can create their own exceptions if they detect a situation in the program
execution that warrants it.

When an exception occurs, we say that it has been raised. You can handle the exception
that has been raised by using a try statement.

67 / 114

Most programming languages provide a way to deal with these errors that will allow the
programmer to have some type of intervention if they so choose. In addition,
programmers can create their own exceptions if they detect a situation in the program
execution that warrants it.

When an exception occurs, we say that it has been raised. You can handle the exception
that has been raised by using a try statement.

In [43]: import math
a_number = int(input("Please enter an integer "))
print(math.sqrt(a_number))

Please enter an integer -3

--

ValueError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\131839230.py in <module>
 1 import math
 2 a_number = int(input("Please enter an integer "))
----> 3 print(math.sqrt(a_number))

ValueError: math domain error

67 / 114

We can handle this exception by calling the print function from within a try block. A
corresponding except block "catches" the exception and prints a message back to the
user in the event that an exception occurs.

68 / 114

We can handle this exception by calling the print function from within a try block. A
corresponding except block "catches" the exception and prints a message back to the
user in the event that an exception occurs.

In [44]: try:
 a_number = int(input("Please enter an integer "))
 print(math.sqrt(a_number))
except:
 print("Bad value for the square root function")
 print("Using the absolute value instead")
 print(math.sqrt(abs(a_number)))

Please enter an integer -3
Bad value for the square root function
Using the absolute value instead
1.7320508075688772

68 / 114

It is also possible for a programmer to cause a runtime exception by using the raise
statement. For example, instead of calling the square root function with a negative
number, we could have checked the value first and then raised our own exception!

69 / 114

It is also possible for a programmer to cause a runtime exception by using the raise
statement. For example, instead of calling the square root function with a negative
number, we could have checked the value first and then raised our own exception!

In [45]: if a_number < 0:
 raise RuntimeError("You can't use a negative number")
else:
 print(math.sqrt(a_number))

--

RuntimeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\1609119426.py in <module>
 1 if a_number < 0:
----> 2 raise RuntimeError("You can't use a negative number")
 3 else:
 4 print(math.sqrt(a_number))

RuntimeError: You can't use a negative number

69 / 114

1.12. Defining Functions

70 / 114

The earlier example of procedural abstraction called upon a Python function called
sqrt() from the math module to compute the square root. In general, we can hide the
details of any computation by defining a function. A function definition requires a name,
a group of parameters, and a body. It may also explicitly return a value.

71 / 114

The earlier example of procedural abstraction called upon a Python function called
sqrt() from the math module to compute the square root. In general, we can hide the
details of any computation by defining a function. A function definition requires a name,
a group of parameters, and a body. It may also explicitly return a value.

In [46]: def square(n):
 return n ** 2

print(square(3))

square(square(3))

9

Out[46]: 81

71 / 114

1.13. Object-Oriented Programming in Python:
Defining Classes

72 / 114

One of the most powerful features in an object-oriented programming language is the
ability to allow a programmer (problem solver) to create new classes that model data that
is needed to solve the problem.

73 / 114

One of the most powerful features in an object-oriented programming language is the
ability to allow a programmer (problem solver) to create new classes that model data that
is needed to solve the problem.

Remember that we use abstract data types to provide the logical description of what a
data object looks like (its state) and what it can do (its methods).

73 / 114

1.13.1. A Fraction Class

74 / 114

A very common example to show the details of implementing a user-defined class is to
construct a class to implement the abstract data type Fraction . Although it is possible
to create a floating point approximation for any fraction, in this case we would like to
represent the fraction as an exact value.

75 / 114

A very common example to show the details of implementing a user-defined class is to
construct a class to implement the abstract data type Fraction . Although it is possible
to create a floating point approximation for any fraction, in this case we would like to
represent the fraction as an exact value.

The operations for the Fraction type will allow a Fraction data object to behave like any
other numeric value. We need to be able to add, subtract, multiply, and divide fractions.

75 / 114

A very common example to show the details of implementing a user-defined class is to
construct a class to implement the abstract data type Fraction . Although it is possible
to create a floating point approximation for any fraction, in this case we would like to
represent the fraction as an exact value.

The operations for the Fraction type will allow a Fraction data object to behave like any
other numeric value. We need to be able to add, subtract, multiply, and divide fractions.

We also want to be able to show fractions using the standard "slash" form, for example
3/5 . In addition, all fraction methods should return results in their lowest terms so that
no matter what computation is performed, we always end up with the most common
form.

75 / 114

In Python , we define a new class by providing a name and a set of method definitions
that are syntactically similar to function definitions. The first method that all classes should
provide is the constructor. The constructor defines the way in which data objects are
created.

76 / 114

In Python , we define a new class by providing a name and a set of method definitions
that are syntactically similar to function definitions. The first method that all classes should
provide is the constructor. The constructor defines the way in which data objects are
created.

In [47]: class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self.num = top
 self.den = bottom

76 / 114

In Python , we define a new class by providing a name and a set of method definitions
that are syntactically similar to function definitions. The first method that all classes should
provide is the constructor. The constructor defines the way in which data objects are
created.

In [47]: class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self.num = top
 self.den = bottom

self is a special parameter that will always be used as a reference back to the object
itself. It must always be the first formal parameter.

76 / 114

To create an instance of the Fraction class, we must invoke the constructor.

77 / 114

To create an instance of the Fraction class, we must invoke the constructor.

In [48]: my_fraction = Fraction(3, 5)

77 / 114

To create an instance of the Fraction class, we must invoke the constructor.

In [48]: my_fraction = Fraction(3, 5)

77 / 114

Abstraction and Encapsulation

78 / 114

Since we are using classes to create abstract data types, we should probably discuss the
meaning of the word "abstract" in this context. Abstraction in object-oriented
programming requires you to focus only on the desired properties and behaviors of
the objects and discard what is unimportant or irrelevant.

79 / 114

Since we are using classes to create abstract data types, we should probably discuss the
meaning of the word "abstract" in this context. Abstraction in object-oriented
programming requires you to focus only on the desired properties and behaviors of
the objects and discard what is unimportant or irrelevant.

It is used in a situation where software programmers want to develop similar objects
without having to redefine the most similar properties.

79 / 114

The object-oriented principle of encapsulation is the notion that we should hide the
contents of a class, except what is absolutely necessary to expose. Hence, we will restrict
the access to our class as much as we can, so that a user can change the class properties
and behaviors only from methods provided by the class.

80 / 114

The object-oriented principle of encapsulation is the notion that we should hide the
contents of a class, except what is absolutely necessary to expose. Hence, we will restrict
the access to our class as much as we can, so that a user can change the class properties
and behaviors only from methods provided by the class.

Python does not have private data. Instead, you use naming conventions to design
classes that encourage correct use. By convention, Python programmers know that any
attribute name beginning with an underscore (_) is for a class’s internal use only. Code
should use the class’s methods to interact with each object’s internal-use data attributes.

80 / 114

Attributes whose identifiers do not begin with an underscore (_) are considered publicly
accessible.

81 / 114

Attributes whose identifiers do not begin with an underscore (_) are considered publicly
accessible.

In [49]: class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self._num = top
 self._den = bottom

81 / 114

Polymorphism

82 / 114

Polymorphism means the ability to appear in many forms. In OOP, polymorphism refers to
the ability to process objects or methods differently depending on their data type, class,
number of arguments, etc. For example, we can overload a constructor with different
numbers and types of arguments to give us more optional ways to instantiate an object of
the class in question.

83 / 114

Polymorphism means the ability to appear in many forms. In OOP, polymorphism refers to
the ability to process objects or methods differently depending on their data type, class,
number of arguments, etc. For example, we can overload a constructor with different
numbers and types of arguments to give us more optional ways to instantiate an object of
the class in question.

In this case, we can use class methods which are associated with a class rather than
individual objects like regular methods are. You can recognize a class method in code
when you see two markers: the @classmethod decorator before the method’s def
statement and the use of cls as the first parameter.

83 / 114

We can then provide alternative constructor methods besides __init__() to implement
polymorphism. Here, we can add additional constructors to handle fractions that are
whole numbers and instances with no parameters given:

84 / 114

We can then provide alternative constructor methods besides __init__() to implement
polymorphism. Here, we can add additional constructors to handle fractions that are
whole numbers and instances with no parameters given:

In [50]: class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self._num = top
 self._den = bottom
 @classmethod
 def fromTop(cls, top):
 return Fraction(top, 1)
 @classmethod
 def fromVoid(cls):
 return Fraction(0, 1)

84 / 114

The cls parameter acts like self except self refers to an object, but the cls
parameter refers to an object’s class. This means that the code in a class method cannot
access an individual object’s attributes or call an object’s regular methods. Class methods
can only call other class methods or access class attributes.

85 / 114

The cls parameter acts like self except self refers to an object, but the cls
parameter refers to an object’s class. This means that the code in a class method cannot
access an individual object’s attributes or call an object’s regular methods. Class methods
can only call other class methods or access class attributes.

Calling the constructor with two arguments will invoke the first method, calling it with a
single argument will invoke the second method, and calling it with no arguments will
invoke the third method.

85 / 114

Using optional parameters will accomplish the same task in this case. Since the class will
behave the same no matter which implementation you use and the user will have no idea
which implementation was chosen, this is an example of encapsulation.

86 / 114

Using optional parameters will accomplish the same task in this case. Since the class will
behave the same no matter which implementation you use and the user will have no idea
which implementation was chosen, this is an example of encapsulation.

In [51]: class Fraction:
 """Class Fraction"""
 def __init__(self, top=0, bottom=1):
 """Constructor definition"""
 self._num = top
 self._den = bottom

86 / 114

Operator overloading

87 / 114

The next thing we need to do is implement the behavior that the abstract data type
requires. To begin, consider what happens when we try to print a Fraction object.

88 / 114

The next thing we need to do is implement the behavior that the abstract data type
requires. To begin, consider what happens when we try to print a Fraction object.

In [52]: my_fraction = Fraction(3, 5)
print(my_fraction)

<__main__.Fraction object at 0x00000285AA5D3C40>

88 / 114

The next thing we need to do is implement the behavior that the abstract data type
requires. To begin, consider what happens when we try to print a Fraction object.

In [52]: my_fraction = Fraction(3, 5)
print(my_fraction)

<__main__.Fraction object at 0x00000285AA5D3C40>

The print function requires that the object convert itself into a string so that the string can
be written to the output. This is not what we want. In Python , all classes have a set of
standard methods that are provided but may not work properly. One of these, __str__ ,
is the method to convert an object into a string .

88 / 114

What we need to do is provide a better implementation for this method. We will say that
this implementation overrides the previous one, or that it redefines the method’s
behavior.

89 / 114

What we need to do is provide a better implementation for this method. We will say that
this implementation overrides the previous one, or that it redefines the method’s
behavior.

In [53]: class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self._num = top
 self._den = bottom
 def __str__(self):
 return f"{self._num}/{self._den}"

my_fraction = Fraction(3, 5)
print(my_fraction)
print(f"I ate {my_fraction} of pizza")
str(my_fraction)

3/5
I ate 3/5 of pizza

Out[53]: '3/5'

89 / 114

We can override many other methods for our new Fraction class. Some of the most
important of these are the basic arithmetic operations.

90 / 114

We can override many other methods for our new Fraction class. Some of the most
important of these are the basic arithmetic operations.

In [54]: f1 = Fraction(1, 4)
f2 = Fraction(1, 2)
f1 + f2

--

TypeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\3976513727.py in <module>
 1 f1 = Fraction(1, 4)
 2 f2 = Fraction(1, 2)
----> 3 f1 + f2

TypeError: unsupported operand type(s) for +: 'Fraction' and 'Fractio
n'

90 / 114

We can override many other methods for our new Fraction class. Some of the most
important of these are the basic arithmetic operations.

In [54]: f1 = Fraction(1, 4)
f2 = Fraction(1, 2)
f1 + f2

--

TypeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_19312\3976513727.py in <module>
 1 f1 = Fraction(1, 4)
 2 f2 = Fraction(1, 2)
----> 3 f1 + f2

TypeError: unsupported operand type(s) for +: 'Fraction' and 'Fractio
n'

We can fix this by providing the Fraction class with a method that overrides the addition
method. In Python , this method is called __add__ and it requires two parameters. The
first, self , is always needed, and the second represents the other operand in the
expression.

90 / 114

In [55]: def gcd(m, n):
 while m % n != 0:
 m, n = n, m % n
 return n

class Fraction:
 """Class Fraction"""
 def __init__(self, top, bottom):
 """Constructor definition"""
 self._num = top
 self._den = bottom
 def __str__(self):
 return f"{self._num}/{self._den}"
 def __add__(self, other_fraction):
 new_num = self._num * other_fraction._den + \
 self._den * other_fraction._num
 new_den = self._den * other_fraction._den
 common = gcd(new_num, new_den)
 return Fraction(new_num // common, new_den // common)

f1 = Fraction(1, 4)
f2 = Fraction(1, 2)
print(f1 + f2)

3/4

91 / 114

92 / 114

An additional group of methods that we need to include in our example Fraction class
will allow two fractions to compare themselves to one another. Assume we have two
Fraction objects, f1 and f2 . f1==f2 will only be True if they are references to the
same object.

92 / 114

Two different objects with the same numerators and denominators would not be equal
under this implementation. This is called shallow equality

93 / 114

Two different objects with the same numerators and denominators would not be equal
under this implementation. This is called shallow equality

93 / 114

We can create deep equality–equality by the same value, not the same reference–by
overriding the __eq__ method

94 / 114

We can create deep equality–equality by the same value, not the same reference–by
overriding the __eq__ method

94 / 114

In [56]: def gcd(m, n):
 while m % n != 0:
 m, n = n, m % n
 return n

class Fraction:
 def __init__(self, top, bottom):
 self._num = top
 self._den = bottom

 def __str__(self):
 return "{:d}/{:d}".format(self._num, self._den)

 def __eq__(self, other_fraction):
 first_num = self._num * other_fraction._den
 second_num = other_fraction._num * self._den

 return first_num == second_num

 def __add__(self, other_fraction):
 new_num = self._num * other_fraction._den \
 + self._den * other_fraction._num
 new_den = self._den * other_fraction._den
 cmmn = gcd(new_num, new_den)
 return Fraction(new_num // cmmn, new_den // cmmn)

95 / 114

In [57]: x = Fraction(1, 2)
y = Fraction(2, 3)
print(y)
print(x + y)
print(x == y)

2/3
7/6
False

96 / 114

Exercise: Implement the remaining relational operators __gt__ , __lt__ . In the definition of
fractions we assumed that negative fractions have a negative numerator and a positive denominator.
Using a negative denominator would cause some of the relational operators to give incorrect results. In
general, this is an unnecessary constraint. Modify the constructor to allow the user to pass a negative
denominator so that all of the operators continue to work properly.

97 / 114

Exercise: Implement the remaining relational operators __gt__ , __lt__ . In the definition of
fractions we assumed that negative fractions have a negative numerator and a positive denominator.
Using a negative denominator would cause some of the relational operators to give incorrect results. In
general, this is an unnecessary constraint. Modify the constructor to allow the user to pass a negative
denominator so that all of the operators continue to work properly.

In [58]: ## Your code here

97 / 114

1.13.2. Inheritance: Logic Gates and Circuits

98 / 114

Inheritance is the ability of one class to be related to another class. Children inherit
characteristics from their parents. Similarly, Python child classes can inherit characteristic
data and behavior from a parent class. These classes are often referred to as subclasses
and superclasses.

99 / 114

Inheritance is the ability of one class to be related to another class. Children inherit
characteristics from their parents. Similarly, Python child classes can inherit characteristic
data and behavior from a parent class. These classes are often referred to as subclasses
and superclasses.

99 / 114

Inheritance is the ability of one class to be related to another class. Children inherit
characteristics from their parents. Similarly, Python child classes can inherit characteristic
data and behavior from a parent class. These classes are often referred to as subclasses
and superclasses.

For example, the list is a child of the sequential collection . In this case, we call
the list the child and the sequence the parent (or subclass list and superclass
sequence). This is often referred to as an Is-a relationship (the list Is-a sequential
collection).

99 / 114

Lists , tuples , and strings are all examples of sequential collections. They all inherit
common data organization and operations. However, each of them is distinct based on
whether the data is homogeneous and whether the collection is immutable. The children
all gain from their parents but distinguish themselves by adding additional
characteristics.

100 / 114

Lists , tuples , and strings are all examples of sequential collections. They all inherit
common data organization and operations. However, each of them is distinct based on
whether the data is homogeneous and whether the collection is immutable. The children
all gain from their parents but distinguish themselves by adding additional
characteristics.

By organizing classes in this hierarchical fashion, object-oriented programming languages
allow previously written code to be extended to meet the needs of a new situation.

100 / 114

Lists , tuples , and strings are all examples of sequential collections. They all inherit
common data organization and operations. However, each of them is distinct based on
whether the data is homogeneous and whether the collection is immutable. The children
all gain from their parents but distinguish themselves by adding additional
characteristics.

By organizing classes in this hierarchical fashion, object-oriented programming languages
allow previously written code to be extended to meet the needs of a new situation.

To explore this idea further, we will construct a simulation, an application to simulate
digital circuits. The basic building block for this simulation will be the logic gate. These
electronic switches represent Boolean algebra relationships between their input and their
output.

100 / 114

101 / 114

101 / 114

In order to implement a circuit, we will first build a representation for logic gates. Logic
gates are easily organized into a class inheritance hierarchy:

102 / 114

In order to implement a circuit, we will first build a representation for logic gates. Logic
gates are easily organized into a class inheritance hierarchy:

We can now start to implement the classes by starting with the most general,
LogicGate . As noted earlier, each gate has a label for identification and a single output
line. In addition, we need methods to allow a user of a gate to ask the gate for its label.

102 / 114

In [59]: class LogicGate:
 def __init__(self, lbl):
 self._label = lbl
 self._output = None

 def get_label(self):
 return self._label

 def get_output(self):
 self._output = self.perform_gate_logic()
 return self._output

103 / 114

In [59]: class LogicGate:
 def __init__(self, lbl):
 self._label = lbl
 self._output = None

 def get_label(self):
 return self._label

 def get_output(self):
 self._output = self.perform_gate_logic()
 return self._output

At this point, we will not implement the perform_gate_logic() . The reason for this is
that we do not know how each gate will perform its own logic operation. Those details
will be included by each individual gate that is added to the hierarchy.

103 / 114

In [59]: class LogicGate:
 def __init__(self, lbl):
 self._label = lbl
 self._output = None

 def get_label(self):
 return self._label

 def get_output(self):
 self._output = self.perform_gate_logic()
 return self._output

At this point, we will not implement the perform_gate_logic() . The reason for this is
that we do not know how each gate will perform its own logic operation. Those details
will be included by each individual gate that is added to the hierarchy.

Any new logic gate that gets added to the hierarchy will simply need to implement the
perform_gate_logic() and it will be used at the appropriate time. Once done, the
gate can provide its output value.

103 / 114

In [60]: class BinaryGate(LogicGate):
 def __init__(self, lbl):
 LogicGate.__init__(self, lbl) # super().__init__(lbl)
 self._pin_a = None
 self._pin_b = None

 def get_pin_a(self):
 if self._pin_a == None:
 return int(input("Enter pin A input for gate " + self.get_label()
 else:
 return self._pin_a.get_from().get_output()
 def get_pin_b(self):
 if self._pin_b == None:
 return int(input("Enter pin B input for gate " + self.get_label()
 else:
 return self._pin_b.get_from().get_output()

 def set_from_pin(self, source):
 if self._pin_a == None:
 self._pin_a = source
 else:
 if self._pin_b == None:
 self._pin_b = source
 else:
 raise RuntimeError("Error: NO EMPTY PINS")

104 / 114

In [60]: class BinaryGate(LogicGate):
 def __init__(self, lbl):
 LogicGate.__init__(self, lbl) # super().__init__(lbl)
 self._pin_a = None
 self._pin_b = None

 def get_pin_a(self):
 if self._pin_a == None:
 return int(input("Enter pin A input for gate " + self.get_label()
 else:
 return self._pin_a.get_from().get_output()
 def get_pin_b(self):
 if self._pin_b == None:
 return int(input("Enter pin B input for gate " + self.get_label()
 else:
 return self._pin_b.get_from().get_output()

 def set_from_pin(self, source):
 if self._pin_a == None:
 self._pin_a = source
 else:
 if self._pin_b == None:
 self._pin_b = source
 else:
 raise RuntimeError("Error: NO EMPTY PINS")

The call to set_from_pin() is very important for making connections.
104 / 114

In [61]: class UnaryGate(LogicGate):

 def __init__(self, lbl):
 LogicGate.__init__(self, lbl)

 self._pin = None

 def get_pin(self):
 if self._pin == None:
 return int(input("Enter pin input for gate " + self.get_label() +
 else:
 return self._pin.get_from().get_output()

 def set_from_pin(self, source):
 if self._pin == None:
 self._pin = source
 else:
 print("Cannot Connect: NO EMPTY PINS on this gate")

105 / 114

In [61]: class UnaryGate(LogicGate):

 def __init__(self, lbl):
 LogicGate.__init__(self, lbl)

 self._pin = None

 def get_pin(self):
 if self._pin == None:
 return int(input("Enter pin input for gate " + self.get_label() +
 else:
 return self._pin.get_from().get_output()

 def set_from_pin(self, source):
 if self._pin == None:
 self._pin = source
 else:
 print("Cannot Connect: NO EMPTY PINS on this gate")

The constructors in both of these classes start with an explicit call to the constructor of
the parent class using the parent’s __init__ method. The constructor then goes on to
add the two input lines (pin_a and pin_b).

105 / 114

Now that we have a general class for gates depending on the number of input lines, we
can build specific gates that have unique behavior. For example, the AndGate class will
be a subclass of BinaryGate since AND gates have two input lines

106 / 114

Now that we have a general class for gates depending on the number of input lines, we
can build specific gates that have unique behavior. For example, the AndGate class will
be a subclass of BinaryGate since AND gates have two input lines

In [63]: class AndGate(BinaryGate):
 def __init__(self, lbl):
 super().__init__(lbl)

 def perform_gate_logic(self):
 a = self.get_pin_a()
 b = self.get_pin_b()
 if a == 1 and b == 1:
 return 1
 else:
 return 0

g1 = AndGate("G1")
g1.get_output()

Enter pin A input for gate G1: 0
Enter pin B input for gate G1: 1

Out[63]: 0

106 / 114

The same development can be done for OR gates and NOT gates:

107 / 114

The same development can be done for OR gates and NOT gates:

In [64]: class OrGate(BinaryGate):

 def __init__(self, lbl):
 BinaryGate.__init__(self, lbl)

 def perform_gate_logic(self):

 a = self.get_pin_a()
 b = self.get_pin_b()
 if a == 1 or b == 1:
 return 1
 else:
 return 0

class NotGate(UnaryGate):

 def __init__(self, lbl):
 UnaryGate.__init__(self, lbl)

 def perform_gate_logic(self):
 if self.get_pin():
 return 0
 else:
 return 1

107 / 114

In [65]: g2 = OrGate("G2")
print(g2.get_output())

g3 = NotGate("G3")
g3.get_output()

Enter pin A input for gate G2: 1
Enter pin B input for gate G2: 0
1
Enter pin input for gate G3: 1

Out[65]: 0

108 / 114

Now that we have the basic gates working, we can turn our attention to building circuits.
In order to create a circuit, we need to connect gates together, the output of one flowing
into the input of another. To do this, we will implement a new class called Connector .

109 / 114

Now that we have the basic gates working, we can turn our attention to building circuits.
In order to create a circuit, we need to connect gates together, the output of one flowing
into the input of another. To do this, we will implement a new class called Connector .

The Connector class will not reside in the gate hierarchy. It will, however, use the gate
hierarchy in that each connector will have two gates, one on either end. This relationship
is very important in object-oriented programming. It is called the Has-a relationship.

109 / 114

Now, with the Connector class, we say that a Connector Has-a LogicGate , meaning
that connectors will have instances of the LogicGate class within them but are not part
of the hierarchy.

110 / 114

Now, with the Connector class, we say that a Connector Has-a LogicGate , meaning
that connectors will have instances of the LogicGate class within them but are not part
of the hierarchy.

In [66]: class Connector:
 def __init__(self, fgate, tgate):
 self.from_gate = fgate
 self.to_gate = tgate

 tgate.set_from_pin(self)

 def get_from(self):
 return self.from_gate

110 / 114

111 / 114

In [67]: g1 = AndGate("gand1")
g2 = AndGate("gand2")
g3 = OrGate("gor3")
g4 = NotGate("gnot4")
c1 = Connector(g1, g3)
c2 = Connector(g2, g3)
c3 = Connector(g3, g4)
g4.get_output()

Enter pin A input for gate gand1: 0
Enter pin B input for gate gand1: 1
Enter pin A input for gate gand2: 0
Enter pin B input for gate gand2: 1

Out[67]: 1

112 / 114

References

113 / 114

1. Texrbook Ch1

114 / 114

	Introduction
	1.1~1.4 Introduction
	1.5 Why Study Data Structures and Abstract
Data Types?
	1.6 Why Study Algorithms?
	1.8 Getting Started with Data
	1.8.1 Built-in Atomic Data Types
	1.8.2. Built-in Collection Data Types

	1.9. Input and Output
	1.9.1. String Formatting

	1.10. Control Structures
	Exercise1

	1.11. Exception Handling
	1.12. Defining Functions
	1.13. Object-Oriented Programming in Python:
De ning Classes
	1.13.1. A Fraction Class
	Polymorphism
	Operator overloading
	Exercise 2
	1.13.2. Inheritance: Logic Gates and Circuits

	References

